

TUTORIAL

Tutorial sobre Análisis Gráfico con Derivadas

Tutorial sobre Análisis Gráfico con Derivadas

Introducción

El análisis gráfico con derivadas es una herramienta fundamental en el cálculo diferencial para entender el comportamiento de las funciones. Utilizando las derivadas, podemos encontrar puntos máximos y mínimos, determinar intervalos de crecimiento y decrecimiento, y analizar la concavidad de las funciones. Este tutorial abordará estos conceptos y proporcionará dos ejercicios propuestos al final.

Derivada Primera: Crecimiento y Decrecimiento

La derivada primera de una función, f'(x), nos indica la pendiente de la tangente a la curva en cada punto. Esto nos ayuda a determinar los intervalos en los que la función está creciendo o decreciendo.

Regla General

- Si f'(x) > 0 en un intervalo, la función f(x) está creciendo en ese intervalo.
- Si f'(x) < 0 en un intervalo, la función f(x) está decreciendo en ese intervalo.

Ejemplo

Consideremos la función $f(x) = x^3 - 3x^2 + 2$.

1. Derivada primera:

$$f'(x) = 3x^2 - 6x$$

2. Encontramos los puntos críticos resolviendo f'(x) = 0:

$$3x^2 - 6x = 0 \implies x(x-2) = 0 \implies x = 0 \text{ o } x = 2$$

- 3. Determinamos los intervalos de crecimiento y decrecimiento evaluando f'(x) en intervalos determinados por los puntos críticos.
- Para x < 0, f'(x) > 0 (crecimiento).
- Para 0 < x < 2, f'(x) < 0 (decrecimiento).
- Para x > 2, f'(x) > 0 (crecimiento).

Derivada Segunda: Concavidad e Inflecciones

La derivada segunda de una función, f''(x), nos indica la concavidad de la función.

Regla General

- Si f''(x) > 0 en un intervalo, la función f(x) es cóncava hacia arriba en ese intervalo.
- Si f''(x) < 0 en un intervalo, la función f(x) es cóncava hacia abajo en ese intervalo.
- Los puntos donde f''(x) = 0 o f''(x) cambia de signo son posibles puntos de inflexión.

Ejemplo

Continuamos con la función $f(x) = x^3 - 3x^2 + 2$.

1. Derivada segunda:

$$f''(x) = 6x - 6$$

2. Encontramos los puntos de inflexión resolviendo f''(x) = 0:

$$6x - 6 = 0 \implies x = 1$$

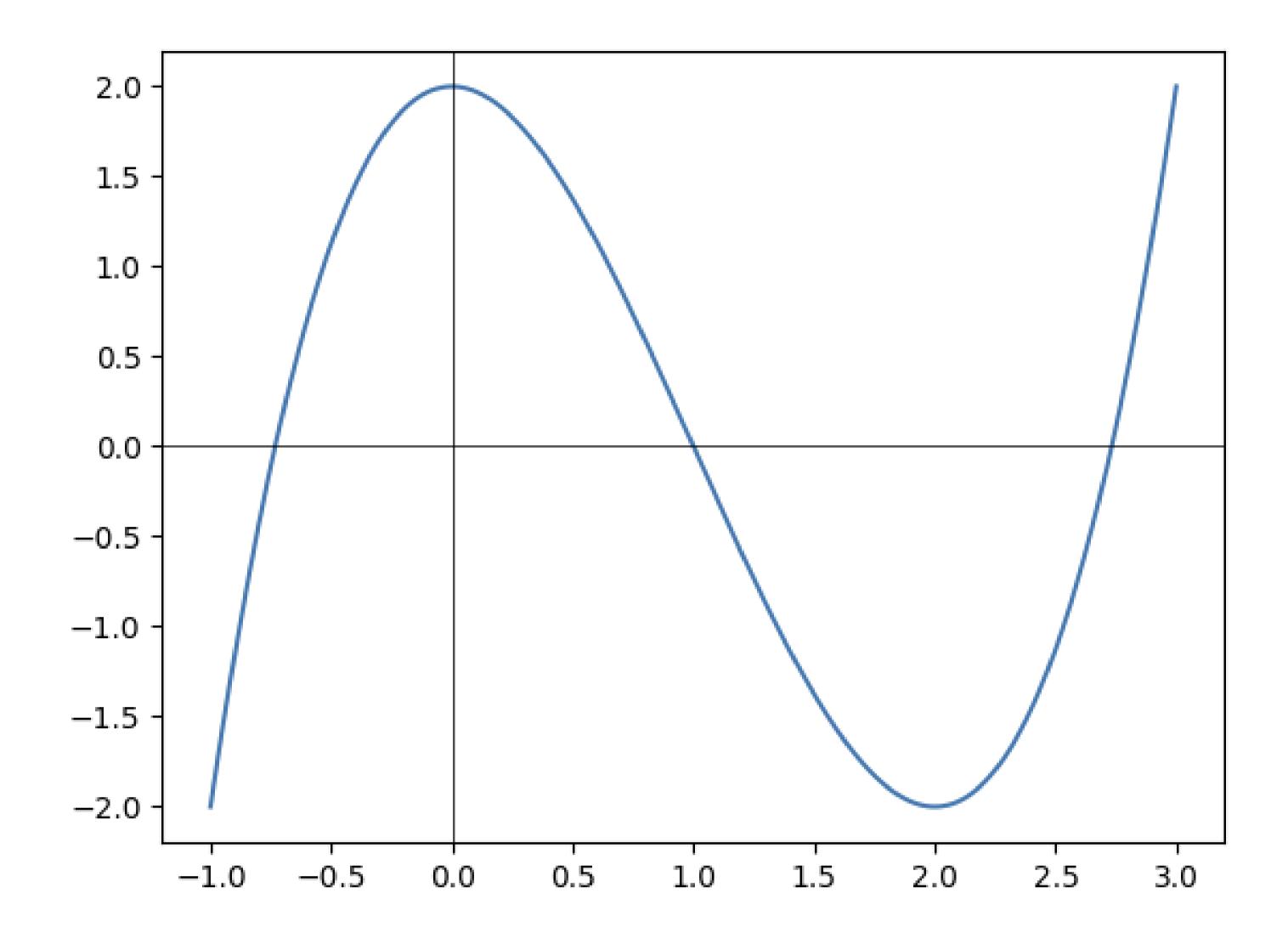
- 3. Determinamos la concavidad evaluando f''(x) en intervalos determinados por los puntos de inflexión.
- Para x < 1, f''(x) < 0 (cóncava hacia abajo).
- Para x > 1, f''(x) > 0 (cóncava hacia arriba).

Gráfica

```
import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-1, 3, 400)
y = x**3 - 3*x**2 + 2

plt.plot(x, y, label=r'$f(x) = x^3 - 3x^2 + 2$')
plt.axhline(0, color='black', linewidth=0.5)
plt.axvline(0, color='black', linewidth=0.5)
plt.scatter([0, 2], [f(0), f(2)], color='red')
plt.scatter(1, f(1), color='blue')
plt.legend()
plt.title('Análisis Gráfico de $f(x)$ con Derivadas')
plt.grid(True)
plt.show()
```



Ejercicios Propuestos de Análisis de Gráficas con Derivadas

Ejercicio 1

Considera la función $f(x) = x^4 - 4x^3 + 6x^2 - 4x + 1$.

Instrucciones

- 1. Encuentra los puntos críticos:
 - Calcula la derivada primera f'(x).
 - Encuentra los valores de x para los que f'(x) = 0.
- 2. Determina los intervalos de crecimiento y decrecimiento:
 - Usa la derivada primera f'(x) para identificar los intervalos donde la función crece o decrece.

3. Determina la concavidad y los puntos de inflexión:

- Calcula la derivada segunda f''(x).
- Encuentra los valores de x para los que f''(x) = 0 o donde f''(x) cambia de signo.
- Usa la derivada segunda f''(x) para determinar los intervalos de concavidad y los puntos de inflexión.

4. Grafica la función:

• Grafica f(x) y marca los puntos críticos, los intervalos de crecimiento y decrecimiento, así como los puntos de inflexión y la concavidad de la función.

Solución Propuesta

1. Derivada primera:

$$f'(x) = 4x^3 - 12x^2 + 12x - 4$$

2. Puntos críticos:

$$4x^3 - 12x^2 + 12x - 4 = 0$$

3. Derivada segunda:

$$f''(x) = 12x^2 - 24x + 12$$

4. Puntos de inflexión:

$$12x^2 - 24x + 12 = 0$$

5. Gráfica:

Utiliza una herramienta gráfica para visualizar la función y marcar los puntos encontrados.

Ejercicio 2

Considera la función $f(x) = \frac{1}{3}x^3 - 2x^2 + 3x - 1$.

Instrucciones

- 1. Encuentra los puntos críticos:
 - Calcula la derivada primera f'(x).
 - Encuentra los valores de x para los que f'(x) = 0.
- 2. Determina los intervalos de crecimiento y decrecimiento:
 - Usa la derivada primera f'(x) para identificar los intervalos donde la función crece o decrece.
- 3. Determina la concavidad y los puntos de inflexión:
 - Calcula la derivada segunda f''(x).
 - Encuentra los valores de x para los que f''(x) = 0 o donde f''(x) cambia de signo.
 - Usa la derivada segunda f''(x) para determinar los intervalos de concavidad y los puntos de inflexión.

4. Grafica la función:

• Grafica f(x) y marca los puntos críticos, los intervalos de crecimiento y decrecimiento, así como los puntos de inflexión y la concavidad de la función.

Solución Propuesta

1. Derivada primera:

$$f'(x) = x^2 - 4x + 3$$

2. Puntos críticos:

$$x^2 - 4x + 3 = 0$$

3. Derivada segunda:

$$f''(x) = 2x - 4$$

4. Puntos de inflexión:

$$2x - 4 = 0$$

5. Gráfica:

Utiliza una herramienta gráfica para visualizar la función y marcar los puntos encontrados.

Conclusión

Estos ejercicios te ayudarán a practicar el análisis gráfico de funciones utilizando derivadas. Al seguir los pasos para encontrar puntos críticos, intervalos de crecimiento y decrecimiento, concavidad y puntos de inflexión, obtendrás una comprensión más profunda del comportamiento de las funciones. ¡Buena suerte!

Encuéntranos

